31st ECCV D Online 9 – 12 July 2021 EUROPEAN SOCIETY OF CLINICAL MICROBIOLOGY AND INFECTIOUS DISEASES

INTRODUCTION

Taniborbactam is a novel β-lactamase inhibitor which directly inhibits all four classes of β –lactamases (Class A, C, D Serine- and VIM/NDM class B metallo- β -lactamases) and enhances the activity of cefepime against metallo-βlactamase (MBL) producing K. pneumoniae and P. aeruginosa isolates. However, a subset of isolates remain resistant to cefepime. We therefore investigated the role of efflux pump activity and AmpC production on the *in vitro* activity of cefepime/taniborbactam combination.

METHOD

Isolates. Non-clonal molecularly characterized clinical MBL producing *K. pneumoniae* (N=19, 39% VIM, 61% NDM) and *P. aeruginosa* (N=59, 100% VIM) isolates highly resistant to cefepime with median (range) MIC >256 (64->256) and 32 (8->256) mg/L, respectively, were studied. In presence of 4 mg/L of taniborbactam, 9/19 K. pneumoniae and 29/59 *P. aeruginosa* remained resistantt to cefepime.

Efflux pump activity. Efflux pump activity was concluded when cefepime MIC was reduced in presence of 25 mg/L carbonyl cyanide m-chlorophenyl hydrazone (CCCP) based on ISO-20776. Cefepime MICs were correlated with cefepime MIC reduction in presence of CCCP.

AmpC production. The presence of AmpC mediated resistance was evaluated in a Mueller Hinton agar plate inoculated with bacterial suspension where 3 disks of imipenem (10µg/disk) alone, imipenem+10µl of 0.1M EDTA, and imipenem+10µl of 0.1M EDTA + 10µl of cloxacillin 4000µg were placed. EDTA inhibits MBLs, imipenem served as an inducer of AmpC production and cloxacillin inhibits AmpC. Any difference of >4 mm between inhibition zones of the triple imipenem-EDTA-cloxacillin and the double imipenem-EDTA disk indicated AmpC activity.

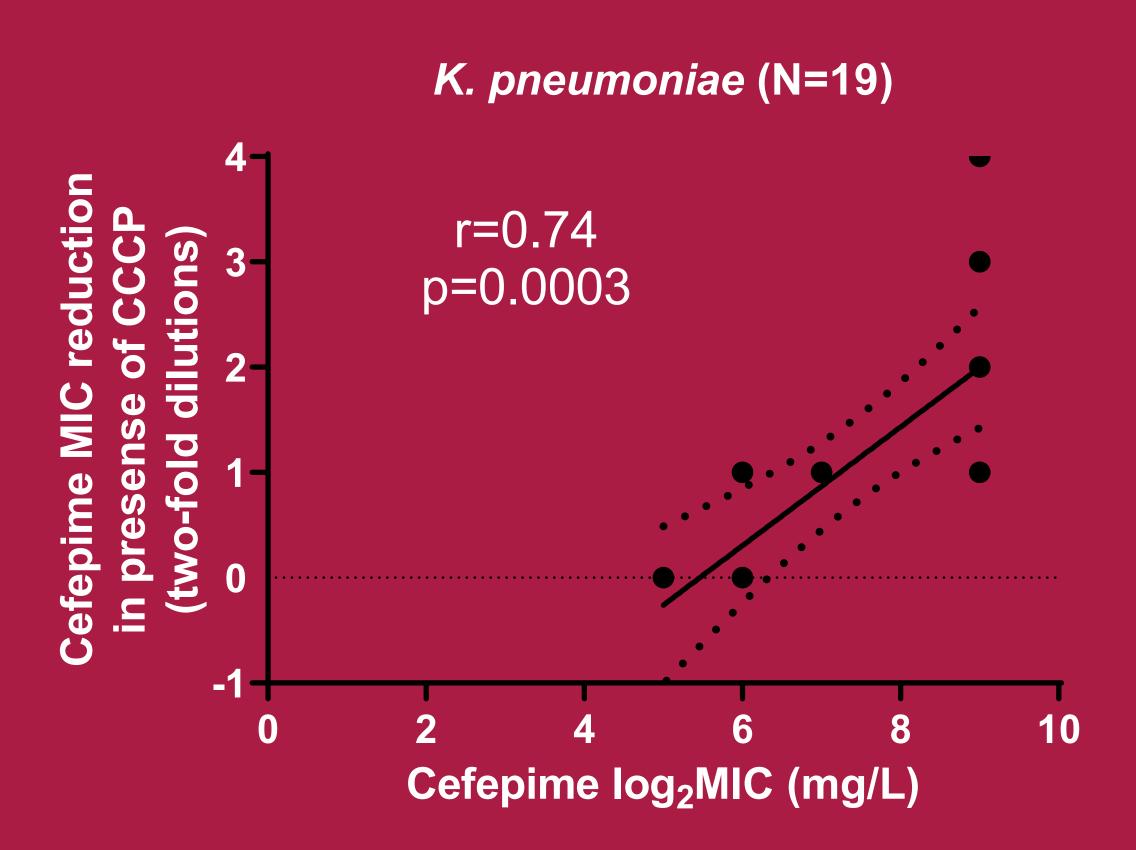
Exploring the in vitro activity of cefepime/taniborbactam combination against metallo beta-lactamase producing Klebsiella pneumoniae and Pseudomonas aeruginosa isolates

P. PARANOS¹, P.C. GEORGIOU¹, S. VOURLI¹, S. ANTONOPOULOU², E. VAGIAKOU², A. MICHELAKI², S. POURNARAS¹, J. MELETIADIS^{1,3} ¹Clinical Microbiology Laboratory, Attikon University Hospital, Athens, Greece, ²Department of Microbiology, General Hospital "G. Gennimatas", Athens, Greece, ³Dept Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherland

Corresponding author: Joseph Meletiadis, Clinical Microbiology Laboratory, Attikon University Hospital, Rimini 1, Haidari, 124 62 Athens, Greece. Tel: +210-583-1909; E-mail: jmeletiadis@med.uoa.gr

RESULTS

> An efflux-pump activity was observed in 63% (12/19) K. pneumoniae and 61% (36/59) of P. aeruginosa isolates.

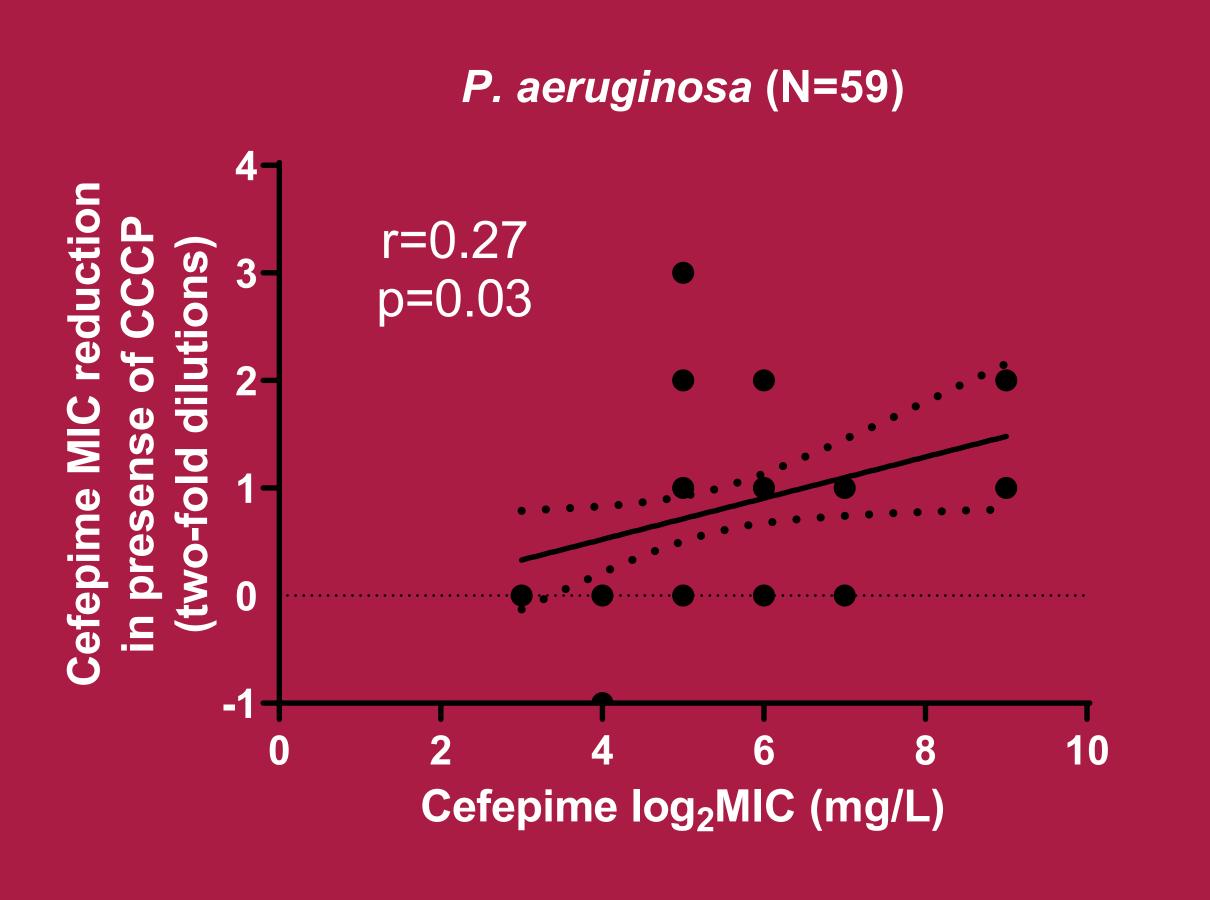

- > A significant correlation was found between cefepime MICs and cefepime MIC reduction in presence of CCCP for *K. pneumoniae* (r=0.74, p=0.0003) and *P. aeruginosa* (r=0.27, p=0.03) (Figure 1).
- > MIC related efflux activity was found between isolates pneumoniae with *K*. cefepime/taniborbactam MICs >4 and ≤4 mg/L [100% (9/9) and 30% (3/10), respectively] (P<0.0031) which had median (range) cefepime MICs >256 (64->256) and 64 (32->256), respectively.

CONCLUSIONS

taniborbactam against K. Cefepime enhancement by pneumoniae isolates with high cefepime MICs was limited by efflux pump activity whereas for P. aeruginosa isolates a complex interplay between AmpC, MBL type and efflux pump activity may be present.

ACKNOWLEDGEMENT This project was sponsored by Venatorx Pharmaceuticals and has been funded in whole or in part with federal funds from the Department of Health and Human Services; Office of the Assistant Secretary for Preparedness and Response; Biomedical Advanced Research and Development Authority, under Contract No. HHSO100201900007C

> MIC inversely related efflux activity was found between P. aeruginosa isolates with cefepime/taniborbactam MICs >8 and ≤8 mg/L [38% (11/29) and 83% (25/30) respectively] (P<0.0005) with no difference in cefepime MICs.



REFERENCES

- Antimicrob Chemother 2005;56:761–4.
- Agents Chemother. 2006;50(9):3150-3153.
- producing Enterobacteriaceae. J Clin Microbiol 2011;49:2798–803. doi:10.1128/JCM.00404-11.
- Pseudomonas aeruginosa. J Clin Microbiol. 2013 Nov;51(11):3846-8.

> AmpC activity was detected in 37% (7/19) of K. pneumoniae and 68% (40/59) P. aeruginosa isolates with no differences found between isolates with cefepime/taniborbactam low and high MICs (P>0.05).

L. Pournaras S, Maniati M, Spanakis N, Ikonomidis A, Tassios PT, Tsakris A, et al. Spread of efflux pump-overexpressing, non-metallo-βlactamase-producing, meropenem-resistant but ceftazidime-susceptible Pseudomonas aeruginosa in a region with blaVIM endemicity. J

2. Pumbwe L, Glass D, Wexler HM. Efflux pump overexpression in multiple-antibiotic-resistant mutants of Bacteroides fragilis. Antimicrob

Polsfuss S, Bloemberg G V., Giger J, Meyer V, Böttger EC, Hombach M. Practical approach for reliable detection of AmpC beta-lactamase-. Fournier D, Garnier P, Jeannot K, Mille A, Gomez AS, Plésiat P. A convenient method to screen for carbapenemase-producing